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The fact that correlation does not imply causation is well known. Correlation between variables at two sites
does not imply that the two sites directly interact, because, e.g., correlation between distant sites may be
induced by chaining of correlation between a set of intervening, directly interacting sites. Such “noncausal
correlation” is well understood in statistical physics: an example is long-range order in spin systems, where
spins which have only short-range direct interactions, e.g., the Ising model, display correlation at a distance. It
is less well recognized that such long-range “noncausal” correlations can in fact be stronger than the magni-
tude of any causal correlation induced by direct interactions. We call this phenomenon superadditive correla-
tion (SAC). We demonstrate this counterintuitive phenomenon by explicit exampl@sammodel spin system
and (i) a model continuous variable system, where both models are such that two variables have multiple
intervening pathways of indirect interaction. We apply the technique known as decimation to explain SAC as
an additive, constructive interference phenomenon between the multiple pathways of indirect interaction. We
also explain the effect using a definition of the collective mode describing the intervening spin variables.
Finally, we show that the SAC effect is mirrored in information theory, and is true for mutual information
measures in addition to correlation measures. Generic complex systems typically exhibit multiple pathways of
indirect interaction, making SAC a potentially widespread phenomenon. This affects, e.g., attempts to deduce
interactions by examination of correlations, as well as, e.g., hierarchical approximation methods for multivari-
ate probability distributions, which introduce parameters based on successive orders of correlation.
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PACS numbsdrs): 05.50+q

[. INTRODUCTION The interactions);; X;X; , induce correlationg;; between
the variables, which may be expressed in terms of the cova-
Consider the system depicted in Fig. 1. The first degree ofiance matrixC;; ,
freedom, here labeled, for convenience, is connected kb 1
other degrees of freedoiq, i=1, ... M, and each of these pij=Cij(CiiCjj) 5 @
in turn are connected to théW(+ 2)th, final degree of free- here
domX,, . 1. There is no direct connection between site 0 andN
site M+1, howeyer .th(.ere are mult|plg, i.eM, indirect Cij = (XiXj) = (X){(X;). (3)
routes of interaction linking site 0 and sit¢+ 1. For nota-
tional convenience we will also reference the varia¥jeas  SAC is present when the correlation between some variables
Xy (*h” stands for “head”) and the variableXy,; asX;  for which J;;=0 is greater than any correlation between any

(“t” stands for “tail”). variables for whichl;; # 0. In other words, SAC occurs when
Interactions are associated with the connections via the maximal correlation in the system is between variables
Hamiltonian, which are not directly connected. Correlation between vari-
ij=M+1 X0
H= 2 XX, (1)

ij=0

where, in the first class of models we consider, the degrees of
freedomX; are two-state spin variables, taking valueg, X] X2 ¢ ¢+ ¢ XM
located at positions indexed loyln the second class of mod-
els that we consider, the degrees of freedénare continu-
ous variables of unrestricted magnitude. The coefficidpts
represent the magnitudégositive or negativeof the direct

: i by
connections between these degrees of freedom. Hépds, Ml
zero if the variable at is not connected to the variable jat FIG. 1. Architecture of the models. THé +2 sites consist of
e.g.,Jn=0. binary spins or continuous variables.
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ables that are not directly connected is a well understood £
effect, called “long-range order,” in the physics of spin sys-
tems[1]. What is less well known is that correlations in-
volved in long-range order can swamp correlations due to
direct connections.

This paper is organized as follows. Section Il demon- 0.9 /
strates the existence of SAC for a discrete state spin model. 0 /!

; o . : : : .8 /
This effect is investigated in detail by the method of decima- ;)
tion in Sec. Il and by the method of collective coordinates in 0.7 S
Sec. IV. The same phenomenon of SAC is then established [

f . . .6 i /
or a system of continuous degrees of freedom in Sec. V, and iy
again we use decimation and collective variables, in Secs. VI .5 i/

and VII, respectively, for a detailed analysis. For the purpose ) ) )
of clarity, Secs. Il-VII are essentially self-contained and F'G- 2. Binary spin model. Ratio=|py:/ppy| between the non-
may be read independently. Section VIII shows that SAC iscausal and the causal correlations, as a function of the strdrajth
also exhibited by mutual information measures and is not hee'rmi:)ancnc;nésii! hlinnee:\/lcisa? Vg;'!h:e 3 ﬁ'rt]ij‘w'n_TeD'r:Eg?ﬂ':te
phenomenon restricted to linear correlation measures. Se _y_ : g o _ o '
tion IX contains discussion and conclusion =5. Notice howr remains<1 for M=2, but can be>1 for
’ large values ofl whenM=3. The largerM, the easier SAC can
occur. However, SAC is maximum for a finite value dfonly,

Il. SUPERADDITIVE CORRELATION: which decreases wheM increases. Very large values dfdamp
DISCRETE VARIABLES SAC.

ConsiderM + 2 binary spins, taking values 1. They are
labeledXq, X1, X5, . .. Xm,Xm+1. We refer to theX, and pne (e2—e ) (eV+2eP+6+2e P+e V)
Xm+1 Spins as the “head” and “tail,” respectivelyX;, and —= T 3 2] 212
X;. The other spins behave as relays between the head and Phi (e+e)(e™+e ™)
tail spins. With couplings denoted W, , the corresponding
Hamiltonian reads

. (8

with the result thaipn>|pn:| when|J| exceeds a “criti-
M cal” value J=0.6. This effect is illustrated in Fig. 2, where
H=> (JniXn+Ji X)X . (4)  the signature of superadditive correlation is that the ratio
=1 =|pnt/pn1| is greater than 1. The figure shows the cases 2
<M =5, from which it may be seen that the critical value for
SAC is a decreasing function &. For fixedM, there is an
“optimal” value of J for which r is maximum. It is seen
Z= % exp(—BH), ®  from Fig. 2 that this optimal value decreases as a function of
M, like the critical value. Whed— «, the ratior becomes 1.
where the summation runs over th¥ 22 available configu- Hence, very large values dfare not efficient for implement-
rations of spins. Without loss of generalitg, the inverse ing SAC.
temperature, can be set equal to 1.
We now restrict, temporarily, the model to the case where
all the nonvanishing couplings are equdl,;=J;;=—J. IIl. DECIMATION: DISCRETE VARIABLES
Since the thermal averagé?), of the squared spins are all
trivially equal to 1, and the thermal averages of the spins
themselves(X;), are equal to 0, the correlatiops reduce
to just the pairwise thermal averages,

The corresponding partition function is

Decimation[2,3] is a technique for simply evaluating the
thermal equilibrium properties of spin systems. Equilibrium
properties may be determined from the partition functton
Decimation makes the calculation @fsimple for situations

pij :<xixj>zzil§ XiXjexp(—H). (6)  in which there are intervening spins:
X
Of special interest are the casés=2 andM =3, which X

exhibit a transition to superadditive correlation. An elemen-
tary calculation shows that, fovl =2,

Pht eZJ —e” 2J

— =, (7) X
pr1 eP+e ¥ !
with the intuitive result thatpy,| <|pni|, i.e., that the corre-
lation between directly interacting spins is greater than that
between nondirectly interacting spins. However, fde= 3,

we find X
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Here X is an intervening spin betweef}, andX;. Decima- X0
tion works by integrating out the degree of freedom of the
intervening spinX; and replacing it by an effective direct
interaction betweelXy, andX; represented by,

> exf — (InaXpnXq+ I3 X1 X0) 1= 2K expl — TpeXpXo).

X1 X1 X2 X3
9
Hence decimation converts the above diagram to
Xh
X4
FIG. 3. An example of decimation: the spikg,X,, X5 will be
integrated out.
may therefore be considered somewhat analogous to additive
constructive or destructive interference, a phenomenon fa-
X miliar in elementary linear wave theory.
t

When J,,;=J;;= —J, the Hamiltonian, Eq(4), may be
written

K is a multiplicative constant to the partition function, and
Ty represents the effective direct interaction:

i=M
Zl xi>. (14)

H=—J(X,+X)
K2=coshJp; +J11) coshIn— Jqp), (10
1 [coshdp+Jdq) The ratio,r =|pn./pn1|, may be easily evaluated by decima-
Thi=—zIn| ——"—|. (1)  tion, with the result that
2| coshtdn;—Jy0)

Note that the sign of the effective direct interactidp, is [cosh2))]M -1
determined by the relative sign df; andJ,; . If J,; andJ r=-— 1
have the samye sign, as is thg caile for allltinter\r/](laning le)ins in [sinh(2J)[[cost22)]""*
the example of the preceding section, thEp is negative
(ferromagnetit. If J,; andJ;, have opposite signs, théh,, ~ This was plotted for various values dbf andJ in Fig. 2.
is positive (antiferromagnetic
In the following, we will specialize to the case where
Jn1=J41=—J, in which case the expressions fidrand T,
simplify to Here we want to single out the degrees of freedom
Xn, X¢, X1 in a model where all relay degrees of freedom
K?=cosh(2J), (120 play a symmetric role. This happens, for instance, when all
nonvanishing couplings are equal, namely.=J;,= —J,

(15

IV. COLLECTIVE MODE: DISCRETE VARIABLES

1 i=1,2,... M. Then we need only calculate covariances in-
Thi= = 7In[cost2J)]. (13 volving Xy, ,X;,X;. Then Eq.(6) reads
Decimation, when applied to multiple intervening spins, ex- X0

plains the phenomenon of SAC. Decimating each of the mul-
tiple intervening spins in Fig. 3 yields multiple, parallel, di-
rect interactions between the head and tail spins, as
represented in Fig. 4. Such parallel direct interactions simply
add together, resulting in a single final direct interaction.
Hence the effects of even weak interactions between con-
nected spins can add together to make a single strong, effec-
tive interaction between nonconnected spins. Depending on
the number of intervening spins, the resulting single effective
interaction can be stronger than any direct, causal interaction
in the system. Although each effective interaction is a non-
linear function of the direct interactions, the process of deci-
mation for multiple intervening spins results in a linear su- X4

perposition of these nonlinear functions, where each term in

the superpositiorifor our examplg has the same sign. SAC FIG. 4. Additive interactions resulting from decimation.
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close to 1, namely as long aremains moderate. All the
pi =271, XiX; exp I(Xn+ X)) X1] qualitative conclusions drawn from Fig. 2 are thus recovered.
{3} Of course, the recovery of E@15) from Eq. (19) also im-
plies that all quantitative conclusions are similarly recovered
X{le} exLI(Xp+Xp) (X +Xz+ - - - +Xy) ], from the collective mode analysis.

i=ht1, j=ht1. (16) V. SUPERADDITIVE CORRELATION:
CONTINUOUS VARIABLES

Here X3 means the summation over the eight configura- . , o e
tions corresponding &y, X;,X;. Similarly =, means The multivariate Gaussian probability density distribution

the summation over the> ! configurations corresponding P(X) describingM + 2 correlated, continuous variables with

to X5,Xs, ... Xy . Since we are going to examine ratios covariance matriC;; and averageg; is given by
such as =|pn./pn1l, the coefficienz 2, or any other global 1o M2
coefficient, can be omitted for the present argument. P(X)=(detC)*A2m)~M*2
The decimation represented by the summatiy - 1, 1
can be interpreted as a summation over the integer values Xexr{ ~3 2 ci}l(xi—ﬂi)(x,-—uj) . (21
taken by the *“collective variable” X+ X3+ .-+ Xy . "

These range, with increments of 2, betweenM and M

—1, with occurrence numbefsnultiplicities) the traditional  In the aboveC;; * refers to the elements of the inverse ma-
binomial coefficients. More explicitly, Eq16) reads trix of C;;. This may be interpreted as the equilibrium prob-
ability density of a system with Hamiltonian,H
=3;;Ci {(Xi— i) (X;— 1;), in a heat bath with inverse tem-
peratureB= 3. Comparing to our previous expression, Egs.

zpij:% XiX;j eXi I(Xp+X) X1]
(4) and (5), for the equilibrium probability distribution of a

uTt (M- spin system with interaction constanis, we see that;;
X zfo nl(M—1—n)! =Ci}l. For continuous variables there are also nonzero self-
couplingsJ;; . Expectations are defined in the usual fashion
XexI(Xp+X)(M—=1-2n)]. (17) by integrals oveRM 2 with a weighting factor given by the
] ] probability densityP(X) above. The covariance matrig,;
The “collective sum” gives = (X X)) = (X){(X;)=(XiX;)— pin; , is related to the corre-

lation matrix p;; by

Zpii= 2, XiX; exg I(Xn+ X X1] -
e t pij=Cij(C;iCjj) 2 (22)

Xexf (M—1)J(X,+X
X ( N+ X)) The relationship between the interaction mat¥jx and the

X{1+exgd —2I(X,+X) M 1, (18)  correlation matrix is therefore straightforward for the con-
tinuous case, in contrast to the discrete case. In the following
and finally model, we sej;=0, Vi.

A physical model, in terms of points connected by
springs, yields the form of the interaction matrix exhibiting
SAC for continuous variables. Consider+2 points, each
M_1 tied to the origin as an anchor position with a spring constant

X{costI(Xn+ X1} (19 4k. Furthermore, consider the zeroth point to be tied to
) . . , . points 1 throughM by springs with spring constants equal to
It will be noticed that, sinceX, and X, are binary spins 4 gimilarly, consider theNl + 1)th point to be tied to points
restricted to the values 1, there is an equivalent form of the 4 throughM by springs with spring constant equal to 4. The
same result, namely, resultant HamiltoniaH is

COSF[J(Xh+Xt)]=KeXF(_ThtXhXt), (20) i=M+1 i=M i=M

— 2 2 2
whereK and T, are those parameters defined by FtR) H=2 iZO kX +2i21 (Xi=Xo) +22’1 (X Xu0)"
and Eg.(13), respectively. The preceding section and the (23
present one thus agree completely.

The strong head-tail correlation brought by the effectivewhich provides a parametrization df; in terms of arith-
interaction — (M —1)T,XpX; is transparent. When M metic constants and the adjustable paramé&térhe correla-
—1)Tp>1, itis perfectly safe to disregard here the configu-tion matrix is then directly determined in terms &f;
rations whereX,, X;= —1, since they are penalized by expo- =Ji]1, WhereJi}l refers to the elements of the inverse ma-
nentially small Boltzmann factors. Thyg, is veryclose to  trix of Jj; .

1. Only four out of eight configurations are left to calculate  To give a numerical example, fdl +2=9 (seven inter-
(XpX1). Itis trivial to find thatpy, boils down to tanh(®.  mediate variables thenk=0.35 yields SAC. The matrix to
This is a signature for SAC as long #anh(2)| is not too  be inverted is

21 MZp, = % X X; exg I(Xn+ X)) X1]
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r735 -1 -1 -1
-1 235 0 O
-1 0 235 0
-1 0 0 235
-2/ -1 0 0 ©
-1 0 0 O
-1 0 0 O
-1 0 0 O
L0 -1 -1 -1

with the resultp,;=0.56<p,;=0.68. In Sec. VI and Sec.
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-1 -1 -1 -1 01
0o 0o o0 o0 -1
o 0 0 0 -1
o 0o o0 o0 -1
235 0 0 0 -1/, (24)
235 0 0 -1
0 0 23 0 -1
0 0 0 23 -1
-1 -1 -1 -1 7.35

from which we note, upon expanding th¥+ X,;)? term, an

VII we show, using two different methods, that SAC gener-effective interaction between head and tail variables propor-

ally occurs for the Hamiltonian, Eq23), for (positive val-
ues ofM andk related by
M?—kM—k?—3M—2k>0. (25)
The minimum value oM for which SAC occurs with con-
tinuous degrees of freedom is th&h=4. The associated

values ofk are 0<k<<0.61. Further analysis is deferred to
the following sections.

VI. DECIMATION: CONTINUOUS VARIABLES

Decimation for continuous variables proceeds anala-
gously to that for discrete variables by integrating out the

tional to —4/(k+2). The magnitude of this effective inter-

action increases proportionally to the number of intervening

variables that are decimated, i.&,,=—4M/(k+2) if M

variables are decimated. The linear additivity of the effects

of multiple intervening variables is therefore simpler in the

continuous case compared to the discrete case of Sec. Il
For M intervening variabledd becomes

i=M
H=2k| X2+ X2+ > x?)
i=1

i=M

i=M
+2Z1 (xh—xi)2+22l (Xi—Xp2 (30

intervening degreees of freedom between head and tail vari-

ables. Consider a Hamiltonian describing interactions of al'he

“head” variable X,, a “tail” variable Xy, .1, and one inter-
vening variableX,, denoted here a%;,, X;, andX,, respec-

tively. The following Hamiltonian is only a special case of

Eq. (23),

H=2K(X2+ X2+ X2)+2(Xp— X1)2+2(Xy— X2
(26)

This may be expanded as

H=2(k+1)(X2+X2)+2(k+2)X3— 4X1(Xp+X,).
(27)

The formula for the integration of a Gaussian,

- 7\ 12 b2
J_ dxexp:—ax2+bx]=(g) exr{4—a), (28)

allows one to decimate the intervening variallgresulting

n
foc daXx 1H
. 1 €X E

m |12 (Xp+X)?
m) exp{—(k+1)(xﬁ+x$)+—

k+2 |’
(29

relative magnitude of “head-tail” to “head-
intermediate” correlations can be evaluated by decimating
only M—1 of the intervening variables, i.e., decimating
X5,X3, ..., XM, resulting in an expression involving,,,

Xi, and X,

f dX2-~-J dXMeX[{
M
ocexp{(—k—MJr

?
2

(XB+X2)— (k+ 2)x§}

k+2

M-1
Xexp 2(Xp+ X)) Xq+2—7Xp X |,

k+2 By

wheree« means up to an inessential multiplicative constant.
Comparing the above expression to E2{l), one may easily
read off elements of the inverse of the covariance matrix as
follows: Cpt=2[(k+M)—(M—1)/(k+2)], Cyl=2[(k
+M)—(M—-1)/(k+2)], Cill=—2(M—-1)/(k+2), Ci
=2(k+2), Cpi'=—2, C;;*=—2. Evaluation of the associ-
ated correlations requires inversion of the symmetric33
matrix having the above elements. Of interest is only the
ratio r=pne/ppi, Where ppe=Ch/(ChnCe)™® and pp
=Cp1/(CnnC10) Y2 Squaring for simplicity, and evaluating
the defining inequality for SAC;2>1, leads to the follow-
ing condition after some minor algebra:
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M2[k2+ (M +2)k+2]

> (k+M)(k+2)[k?+(M+2)k+M]. (32
It may be verifed fok>0 and similtaneousli >0 that this
inequality is satisfied when

M?2—kM—k?—3M—2k>0. (33
The region in M,k) space where SAC is exhibited is shown
in Fig. 5.

VII. COLLECTIVE MODE: CONTINUOUS VARIABLES

Consider Eq(23) and the corresponding matrix of cou-
plings. For the sake of definiteness in the following dis-
played matrices, we sét =5 temporarily, the generalization
to any value ofM being obvious. Also, for convenience, the
labeling of rows and columns is slightly modified: the order
of degrees of freedom in the following matrices X§,
=X, Xi=Xm+1:X1,Xs2, ... Xy, because we want to ex-

hibit the symmetry between the head and the tail and, more;

. . he
over, we want to stress the matrix block structure which goes
with the existence of the intermediate layer and the absenc

of direct coupling between head and tail. It will be noticed

B. G. GIRAUD, JOHN M. HEUMANN, AND ALAN S. LAPEDES
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2.

%)

0

M

0 2 4 6 8

FIG. 5. In theM>0k>0 quadrant, the white area shows where
model with continuous variables exhibits SAC. The dark area,

eonversely, does not allow SAC.

C

that the formulas which relate covariance to correlation ma=|pn/pnil, i=1,2, . . . M, which compare the head-tail corre-
trix elements are insensitive to an arbitrary scaling of thdation with any of the head-relafor tail-relay correlations.

degrees of freedom. The same is true for the ratips

[M+k 0 -1

0 M+k -1

-1 -1 2+k

J-o| "1 -1 0
-1 -1 0

-1 -1 0

-1 -1 0

The matrix to be inverted then reads

While the diagonal matrix elements account for an anchoringaind take advantage of the fact that

of the X;’'s to the origin of the configuration spacH, Eq.

(23) contains, besides such one-body terms, the two-body

interactions

i=M
v:—z(xh+xt)21 X; . (35

Such nondiagonal terms represent a dipole-dipole interactio

between, on the one hand, “the head plus the tail,” and, o
the other hand, a collective coordinate=}"'X;. Out of this
collective coordinate, we want to single out, for example,

in order to comparep,; with pn;. It is then convenient to
define

i=M
X=(M-1)"12

Xi,
2

(36)

n

-1 -1 -1 -1
-1 -1 -1 -1
0 0 0 0
2+k 0 0 0 (34)
0 2tk 0 0
0 0 2tk ©
0 0 0 2k
[
V=—2(Xp+X)[ X1+ (M—1)Y21]. (37)

When expanded with respect to the initial degrees of free-
dom X;, the collective coordinateét’ can be viewed as a
“symmetric” vector, M—1)"Y%(1,1,1 ...,1), with equal
components in the “collective” subspac@ spanned by
R, Xar ... Xu. The coefficient 1—1)" Y2 ensures a
proper normalization oft’ with a Euclidean metric irt.

For the calculation ofp,; and py;, nothing prevents us
from representing7 on a suitable basis of the subspate
such as an orthonormal basis includitigFor M =5, such a
basis could, for instance, be made Afand the other three
vectors M—1)"Y(1,1-1,-1), M—1)"Y(1,-1,1-1),
and M—1)"Y41,—1,—1,1). Listing such vectors as col-
umns generates the matrix
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1 1 1 1 volve the block matrix,
M—1)-12 1 1 -1 -1 - Lo
REM=D7T 1 1 1) 38 =[ : ° : (39
0" R

1 -1 -1 1

For M#5 the structure ofR is the same, with¥ in its first ~ wherelg, 0, and 0 are, respectively, the identity matrix in
column and all other columns showing vectors orthogonal tdhree-dimensional space, th&x8M — 1) null matrix, and its

X. Since X;,, X;, and X; are left intact, the considered transpose. We are now interested in the new representation
change of basis in theM + 2)-dimensional space will in- of 7,

M +k 0 -1 —-(M-D1)¥ 0 0 0
0 M +k -1 —(M-D¥? o0 0 0
-1 -1 2+k 0 0 0 0
S5-175=2 -M-1¥2 —(m-1¥2 0 2+k 0 0 0 (40)
0 0 0 0 2+k 0 0
0 0 0 0 0 2tk O
0 0 0 0 0 0 2+k
|
It must be stressed, whether we considéor its inverse ) (k+M)(k+2)
J 1, that the 3<3 submatrix corresponding to the subspace Ph1 (42

= 2 2 '
spanned by, X;,X; is unchanged. This is why we want to [k*+(M+2)k+ M][k"+(M+2)k+2]

calculatepy, and py, in the new representation. The same |y js easy to verify that, fok>0 and simultaneousii >0,
invariance is true for theM — 1)< (M — 1) submatrix corre- the quantityr2=(pp./pny)? is larger than 1 as soon as

sponding toX,,Xs, ... Xy . Indeed this submatrix was di-

agonal and is not modified by the transformation described M2—KkM—k?—3M —2k>0. (43)
by R. Furthermore, for7, the vanishing couplings of; to

the same subspackare also left unchanged, obviously. This criterion comes from the factorization f— 1, a ratio-

We now turn to the couplings of, (or equivalentlyX;) nal function ofk andM in the model. All factors are positive
to C. In the initial representation these make a “symmetric” definite, except that onéyl>—kM—k?—3M — 2k. This de-
vector (—1,—1,...,—1), proportional tox, and thus or- fines the parameter domain where SAC occurs. The minimal
thogonal to all the other basis vectors of the new representdnteger value ofM for which this condition allows positive
tion. Hence all the corresponding new matrix elements vanvalues ofk is M=4. For M=3, the roots of the left-hand
ish, except that one which represents the couplingpédnd  side of this condition with respect th are k=0 and k=
X. The corresponding strength becoméé1)'? as pre- —5, while for M=4 these ark=—6.61 andk=0.61. As
dicted by Eq.(37). shown by Fig. 5, where the area’l is shaded, the positive
Furthermore, the new representation gives an almost di root, showing the border of the SAC domain, increases
agonal matrix. The correlations to be calculated then demanalmost linearly as a function ofl. All the results of the

the inversion of a 44 submatrix only, preceding section are recovered.
M+k 0 -1 —(M-1'¥ VIIl. MUTUAL INFORMATION
1/2
Ho=2 0 M+k -1 -M-1) In this section we show that our conclusions concerning
4 -1 -1 2+k 0 ’ SAC also hold if mutual information, instead of correlation,

is used to quantify the relationship between discrete head,
tail, and intermediate variables. Mutual informatip#)] is
(41 defined in terms of entropies as follows:

-M-1)¥2 —(Mm—-1)¥? 0 2+k

Straightforward, but slightly cumbersome, this inversion M=Q@)+Q(j)-Qd)), (44)

of }, provides the desired results, where(Q (i), respectively()(j), are the single site entropies

at positioni, respectivelyj, e.g.,Q(i)= —EXiP(Xi)In P(X).
— M , The pairwise entropy is similarly defined aQ(ij)=
K2+ (M+2)k+M =2y, %, P(Xi . X)) In P(X; X).

Pht
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The single site and pairwise probability distributions may r, 1nJ
be related to correlations by the Bahadur-Lazarfeld expan- 4
sion[5] for an arbitrary, discrete state, multivariate probabil-
ity distribution,

P(X1,X2, ... XN)
=PNeR X, Xy, ... XN)

20 40 60 80
X 1+2 p|]Y|YJ+E pijkYinYk+"' . -1
i<j i<j<k

(45) -2

In the above PP is the independent probability distribu-  FIG. 6. Best performance (upper curvé and logarithm of the
tion defined by corresponding coupling strengdh(lower curve as functions of the
numberM of relays.

PRX1, Xz, - ’XN):H P11 — Py 702, formation should not be confused with reinforcement of am-
(46) plitudes, because information is amplitude independent. This
paper shows that noisy signals transmitted via multiple

whereP; is the probability thaiX;=1. The variablesr; are  routes can preserve information usiogherence effects

zero mean, unit variance variables related to Xheby Y; As usual, the multiplication of routes has the benefit of
= (Xi—(XN/(1—(X;)>)Y2 The p;; are the usual two-point robustness, but the defect of an increase of cost. The cost
correlation functions, whilep;y ,pij ... are similarly increase, in our case, can be moderated by the use of links
three-point, four-point,. . ., N-point correlation functions. ~ With weak, and hence perhaps cheaper, couplings as long as
It is easily verified from Eq(45) that the two-point mar- the links remain coherent with one another. While the build
ginals P(X; X)) reduce to up of an amplitude by the addition of coherent signals is not

a new phenomenon, the point of this paper is the build up of
information via multiple routes involving relays.
' (47) What this paper showed in some detail is that the multiple
route solution may easily proceed by relays, see Fig. 1 and
while the one-point marginalsP(X;), reduce toP(X;) Fig. 3, rather than by multiple direct connections, see Fig. 4.
=X;P;+ (1—X;)/2. For the situation considered in Secs. Il— The method of decimation shows that, all told, relays amount
IV, P,=1/2, hence evaluating the marginal distributions into direct routes, see again Fig. 4. Moreover, this paper stud-
this case, and substituting into E@t4), which defines the ied the occurrence of superadditive correlation at finite tem-

P(X; . X)) = PR X, X))| 1+ > py; Y}V,
i<j

mutual information, yields perature. The increased correlation between emitter and the
receiver can thus be implemented in the presence of noise.
Mij=1+[(1+ p;;)/2]In[(1+ p;;)/2] The main result of the paper is that, given a scale for the

noise (temperaturg the system can be optimized with re-
spect to its cost, namely both its architectiitee numbeiM
of relayg and the strength of the couplingsto be imple-

. Y .
;n‘(‘;gn(tio:y’)gEfzulr?((jqe—d(fit(\q,ﬁ?—oq??r? tt'r:,nvg gagf?ce_ﬂnemented. This is clear from Fig. 2, for instance, which illus-

titious probabilityq=(1+ p;;)/2 and rewrite the above as trates thegmstence of both a minimum couplln_g strength for
superadditive correlation to occur, and an optimal value of

+ (1= py)/2lIn[(1= p;j)/2]. (49

M =1-Q(q). (49)  this strength. We show in Fig. 6 the best performanaeail-
. able and the corresponding optimlas functions oM.
In Secs. lI-1V, the correlatiop,,; was calculated and com- A system which shows a great amount of “fan out—fan

pared topp;. SAC is defined bypn|>|pni|. Since entropy in” architectures is the central nervous system of vertebrates.
is a concave function of the “probability,” then Eq48)  As shown by[6], synaptic processes are stochastic. There is
verifies thatM,>My; whenever|p,|>|pni|. Hence, the thus a significant amount of information loss at synapses. It
examples of SAC described in Secs. II-IV hold if mutualis thus tempting to see whether multiple synaptic contacts
information, instead of correlation, is used to quantify thebetween two neurons, or a sensor cell and a neuron, or a

relation between variables. neuron and an effector cell, may turn out to restore a corre-
lation which was degraded at individual synapses. Neuro-
IX. DISCUSSION AND CONCLUSION physiological experiments for such tests might be possible.

At a larger scale, the very strong “fan out—fan in” exhibited
It is well known that multiple routes of communication, by the cerebellum, from mossy fibers to Purkinje céls
besides redundant coding of messages, can ensure reliabieany as 10 parallel fibers contacting a Purkinje gelinight
transmission of information in the presence of noise. Infor-also give rise to such reinforcement of correlations, most
mation transmission is achieved by the preservation of coruseful in the coordination of ballistic motions. For early
relation, or mutual information, between an informationwork on the theory of the cerebellum, sgg. The narrow
source and an information receiver. This conservation of intime windows discovered k8] in the action of basket cells
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upon Purkinje cells give a hint that precise time correlations ACKNOWLEDGMENTS
are involved in the task of the cerebellum. A time-dependent
reformulation of the present paper is clearly in order. The authors thank Lon Chang Liu for a stimulating con-

Finally, the SAC effect raises a warning: while analysis ofversation. Lapedes’s research was supported by the U.S. De-
complex systems often deduces a hierarchy of interactiongartment of Energy under Contract No. W-7405-ENG-36,
from a hierarchy of correlations, see, e[@,10], we proved and by travel funds from the Service de PhysiquédFiuie,
that indirect interactions may generate dominant correlation€enter d’Etudes de Saclay, where part of this work was per-
The hierarchical approach, therefore, demands some cautioformed. Lapedes also thanks the Santa Fe Institute for its

An alternative approach is explored[ihl,12. hospitality.
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