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The fact that correlation does not imply causation is well known. Correlation between variables at two sites
does not imply that the two sites directly interact, because, e.g., correlation between distant sites may be
induced by chaining of correlation between a set of intervening, directly interacting sites. Such ‘‘noncausal
correlation’’ is well understood in statistical physics: an example is long-range order in spin systems, where
spins which have only short-range direct interactions, e.g., the Ising model, display correlation at a distance. It
is less well recognized that such long-range ‘‘noncausal’’ correlations can in fact be stronger than the magni-
tude of any causal correlation induced by direct interactions. We call this phenomenon superadditive correla-
tion ~SAC!. We demonstrate this counterintuitive phenomenon by explicit examples in~i! a model spin system
and ~ii ! a model continuous variable system, where both models are such that two variables have multiple
intervening pathways of indirect interaction. We apply the technique known as decimation to explain SAC as
an additive, constructive interference phenomenon between the multiple pathways of indirect interaction. We
also explain the effect using a definition of the collective mode describing the intervening spin variables.
Finally, we show that the SAC effect is mirrored in information theory, and is true for mutual information
measures in addition to correlation measures. Generic complex systems typically exhibit multiple pathways of
indirect interaction, making SAC a potentially widespread phenomenon. This affects, e.g., attempts to deduce
interactions by examination of correlations, as well as, e.g., hierarchical approximation methods for multivari-
ate probability distributions, which introduce parameters based on successive orders of correlation.
@S1063-651X~99!07105-6#
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I. INTRODUCTION

Consider the system depicted in Fig. 1. The first degre
freedom, here labeledX0 for convenience, is connected toM
other degrees of freedomXi , i 51, . . . ,M , and each of these
in turn are connected to the (M12)th, final degree of free-
domXM11. There is no direct connection between site 0 a
site M11, however there are multiple, i.e.,M, indirect
routes of interaction linking site 0 and siteM11. For nota-
tional convenience we will also reference the variableX0 as
Xh ~‘‘ h’’ stands for ‘‘head’’! and the variableXM11 as Xt
~‘‘ t ’’ stands for ‘‘tail’’ !.

Interactions are associated with the connections vi
Hamiltonian,

H5 (
i , j 50

i , j 5M11

Ji j XiXj , ~1!

where, in the first class of models we consider, the degree
freedomXi are two-state spin variables, taking values61,
located at positions indexed byi. In the second class of mod
els that we consider, the degrees of freedomXi are continu-
ous variables of unrestricted magnitude. The coefficientsJi j
represent the magnitudes~positive or negative! of the direct
connections between these degrees of freedom. Hence,Ji j is
zero if the variable ati is not connected to the variable atj,
e.g.,Jht50.
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The interactions,Ji j XiXj , induce correlationsr i j between
the variables, which may be expressed in terms of the co
riance matrixCi j ,

r i j 5Ci j ~Cii Cj j !
21/2, ~2!

where

Ci j 5^XiXj&2^Xi&^Xj&. ~3!

SAC is present when the correlation between some varia
for which Ji j 50 is greater than any correlation between a
variables for whichJi j Þ0. In other words, SAC occurs whe
the maximal correlation in the system is between variab
which are not directly connected. Correlation between va

FIG. 1. Architecture of the models. TheM12 sites consist of
binary spins or continuous variables.
4983 ©1999 The American Physical Society
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ables that are not directly connected is a well underst
effect, called ‘‘long-range order,’’ in the physics of spin sy
tems @1#. What is less well known is that correlations in
volved in long-range order can swamp correlations due
direct connections.

This paper is organized as follows. Section II demo
strates the existence of SAC for a discrete state spin mo
This effect is investigated in detail by the method of decim
tion in Sec. III and by the method of collective coordinates
Sec. IV. The same phenomenon of SAC is then establis
for a system of continuous degrees of freedom in Sec. V,
again we use decimation and collective variables, in Secs
and VII, respectively, for a detailed analysis. For the purp
of clarity, Secs. II–VII are essentially self-contained a
may be read independently. Section VIII shows that SAC
also exhibited by mutual information measures and is no
phenomenon restricted to linear correlation measures.
tion IX contains discussion and conclusion.

II. SUPERADDITIVE CORRELATION:
DISCRETE VARIABLES

ConsiderM12 binary spins, taking values61. They are
labeledX0 ,X1 ,X2 , . . . ,XM ,XM11. We refer to theX0 and
XM11 spins as the ‘‘head’’ and ‘‘tail,’’ respectively,Xh and
Xt . The other spins behave as relays between the head
tail spins. With couplings denoted byJi j , the corresponding
Hamiltonian reads

H5(
i 51

M

~JhiXh1JitXt!Xi . ~4!

The corresponding partition function is

Z5(
$x%

exp~2bH !, ~5!

where the summation runs over the 2M12 available configu-
rations of spins. Without loss of generality,b, the inverse
temperature, can be set equal to 1.

We now restrict, temporarily, the model to the case wh
all the nonvanishing couplings are equal,Jhi5Jit52J.
Since the thermal averages,^Xi

2&, of the squared spins are a
trivially equal to 1, and the thermal averages of the sp
themselves,̂Xi&, are equal to 0, the correlationsr i j reduce
to just the pairwise thermal averages,

r i j 5^XiXj&5Z21(
$x%

XiXj exp~2H !. ~6!

Of special interest are the casesM52 andM53, which
exhibit a transition to superadditive correlation. An eleme
tary calculation shows that, forM52,

rht

rh1
5

e2J2e22J

e2J1e22J
, ~7!

with the intuitive result thaturhtu,urh1u, i.e., that the corre-
lation between directly interacting spins is greater than t
between nondirectly interacting spins. However, forM53,
we find
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rht

rh1
5

~eJ2e2J!~e4J12e2J1612e22J1e24J!

~eJ1e2J!~e2J1e22J!2
, ~8!

with the result thaturhtu.urh1u when uJu exceeds a ‘‘criti-
cal’’ value J.0.6. This effect is illustrated in Fig. 2, wher
the signature of superadditive correlation is that the ratir
5urht /rh1u is greater than 1. The figure shows the case
<M<5, from which it may be seen that the critical value f
SAC is a decreasing function ofM. For fixedM, there is an
‘‘optimal’’ value of J for which r is maximum. It is seen
from Fig. 2 that this optimal value decreases as a function
M, like the critical value. WhenJ→`, the ratior becomes 1.
Hence, very large values ofJ are not efficient for implement-
ing SAC.

III. DECIMATION: DISCRETE VARIABLES

Decimation@2,3# is a technique for simply evaluating th
thermal equilibrium properties of spin systems. Equilibriu
properties may be determined from the partition functionZ.
Decimation makes the calculation ofZ simple for situations
in which there are intervening spins:

.

FIG. 2. Binary spin model. Ratior 5urht /rh1u between the non-
causal and the causal correlations, as a function of the strengthJ of
the interaction. Full line: case withM52 sites in the intermediate
layer. Long dashed line:M53. Dashed line:M54. Dotted line:
M55. Notice howr remains,1 for M52, but can be.1 for
large values ofJ when M>3. The largerM, the easier SAC can
occur. However, SAC is maximum for a finite value ofJ only,
which decreases whenM increases. Very large values ofJ damp
SAC.
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HereX1 is an intervening spin betweenXh andXt . Decima-
tion works by integrating out the degree of freedom of t
intervening spinX1 and replacing it by an effective direc
interaction betweenXh andXt represented byTht ,

(
X1

exp@2~Jh1XhX11J1tX1Xt!#52K exp~2ThtXhXt!.

~9!

Hence decimation converts the above diagram to

.

K is a multiplicative constant to the partition function, an
Tht represents the effective direct interaction:

K25cosh~Jh11J1t!cosh~Jh12J1t!, ~10!

Tht52
1

2
lnFcosh~Jh11J1t!

cosh~Jh12J1t!
G . ~11!

Note that the sign of the effective direct interactionTht is
determined by the relative sign ofJh1 andJ1t . If Jh1 andJ1t
have the same sign, as is the case for all intervening spin
the example of the preceding section, thenTht is negative
~ferromagnetic!. If Jh1 andJ1t have opposite signs, thenTht
is positive~antiferromagnetic!.

In the following, we will specialize to the case whe
Jh15J1t52J, in which case the expressions forK andTht
simplify to

K25cosh~2J!, ~12!

Tht52
1

2
ln@cosh~2J!#. ~13!

Decimation, when applied to multiple intervening spins, e
plains the phenomenon of SAC. Decimating each of the m
tiple intervening spins in Fig. 3 yields multiple, parallel, d
rect interactions between the head and tail spins,
represented in Fig. 4. Such parallel direct interactions sim
add together, resulting in a single final direct interactio
Hence the effects of even weak interactions between c
nected spins can add together to make a single strong, e
tive interaction between nonconnected spins. Depending
the number of intervening spins, the resulting single effect
interaction can be stronger than any direct, causal interac
in the system. Although each effective interaction is a n
linear function of the direct interactions, the process of de
mation for multiple intervening spins results in a linear s
perposition of these nonlinear functions, where each term
the superposition~for our example! has the same sign. SAC
in
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may therefore be considered somewhat analogous to add
constructive or destructive interference, a phenomenon
miliar in elementary linear wave theory.

When Jhi5Jit52J, the Hamiltonian, Eq.~4!, may be
written

H52J~Xh1Xt!S (
i 51

i 5M

Xi D . ~14!

The ratio,r 5urht /rh1u, may be easily evaluated by decim
tion, with the result that

r 5
@cosh~2J!#M21

usinh~2J!u@cosh~2J!#M21
. ~15!

This was plotted for various values ofM andJ in Fig. 2.

IV. COLLECTIVE MODE: DISCRETE VARIABLES

Here we want to single out the degrees of freed
Xh ,Xt ,X1 in a model where all relay degrees of freedo
play a symmetric role. This happens, for instance, when
nonvanishing couplings are equal, namelyJhi5Jit52J,
i 51,2, . . . ,M . Then we need only calculate covariances
volving Xh ,Xt ,X1. Then Eq.~6! reads

FIG. 3. An example of decimation: the spinsX1 ,X2 ,X3 will be
integrated out.

FIG. 4. Additive interactions resulting from decimation.
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r i j 5Z21(
$3%

XiXj exp@J~Xh1Xt!X1#

3 (
$M21%

exp@J~Xh1Xt!~X21X31•••1XM !#,

i 5h,t,1, j5h,t,1. ~16!

Here ($3% means the summation over the eight configu
tions corresponding toXh ,Xt ,X1. Similarly ($M21% means
the summation over the 2M21 configurations correspondin
to X2 ,X3 , . . . ,XM . Since we are going to examine ratio
such asr 5urht /rh1u, the coefficientZ21, or any other global
coefficient, can be omitted for the present argument.

The decimation represented by the summation($M21%
can be interpreted as a summation over the integer va
taken by the ‘‘collective variable’’X21X31•••1XM .
These range, with increments of 2, between 12M and M
21, with occurrence numbers~multiplicities! the traditional
binomial coefficients. More explicitly, Eq.~16! reads

Zr i j 5(
$3%

XiXj exp@J~Xh1Xt!X1#

3 (
n50

n5M21
~M21!!

n! ~M212n!!

3exp@J~Xh1Xt!~M2122n!#. ~17!

The ‘‘collective sum’’ gives

Zr i j 5(
$3%

XiXj exp@J~Xh1Xt!X1#

3exp@~M21!J~Xh1Xt!#

3$11exp@22J~Xh1Xt!#%
M21, ~18!

and finally

212MZr i j 5(
$3%

XiXj exp@J~Xh1Xt!X1#

3$cosh@J~Xh1Xt!#%
M21. ~19!

It will be noticed that, sinceXh and Xt are binary spins
restricted to the values61, there is an equivalent form of th
same result, namely,

cosh@J~Xh1Xt!#5K exp~2ThtXhXt!, ~20!

whereK and Tht are those parameters defined by Eq.~12!
and Eq. ~13!, respectively. The preceding section and t
present one thus agree completely.

The strong head-tail correlation brought by the effect
interaction 2(M21)ThtXhXt is transparent. When (M
21)Tht@1, it is perfectly safe to disregard here the config
rations whereXhXt521, since they are penalized by exp
nentially small Boltzmann factors. Thusrht is very close to
1. Only four out of eight configurations are left to calcula
^XhX1&. It is trivial to find thatrh1 boils down to tanh(2J).
This is a signature for SAC as long asutanh(2J)u is not too
-

es

e

-

close to 1, namely as long asJ remains moderate. All the
qualitative conclusions drawn from Fig. 2 are thus recover
Of course, the recovery of Eq.~15! from Eq. ~19! also im-
plies that all quantitative conclusions are similarly recove
from the collective mode analysis.

V. SUPERADDITIVE CORRELATION:
CONTINUOUS VARIABLES

The multivariate Gaussian probability density distributi
P(X) describingM12 correlated, continuous variables wit
covariance matrixCi j and averagesm i is given by

P~X!5~detC!1/2~2p!2~M12!/2

3expF2
1

2 (
i j

Ci j
21~Xi2m i !~Xj2m j !G . ~21!

In the above,Ci j
21 refers to the elements of the inverse m

trix of Ci j . This may be interpreted as the equilibrium pro
ability density of a system with Hamiltonian,H
5( i j Ci j

21(Xi2m i)(Xj2m j ), in a heat bath with inverse tem
peratureb5 1

2 . Comparing to our previous expression, Eq
~4! and ~5!, for the equilibrium probability distribution of a
spin system with interaction constantsJi j , we see thatJi j

5Ci j
21 . For continuous variables there are also nonzero s

couplingsJii . Expectations are defined in the usual fashi
by integrals overRM12 with a weighting factor given by the
probability densityP(X) above. The covariance matrix,Ci j
5^XiXj&2^Xi&^Xj&5^XiXj&2m im j , is related to the corre-
lation matrixr i j by

r i j 5Ci j ~Cii Cj j !
21/2. ~22!

The relationship between the interaction matrixJi j and the
correlation matrix is therefore straightforward for the co
tinuous case, in contrast to the discrete case. In the follow
model, we setm i50, ; i .

A physical model, in terms of points connected b
springs, yields the form of the interaction matrix exhibitin
SAC for continuous variables. ConsiderM12 points, each
tied to the origin as an anchor position with a spring const
4k. Furthermore, consider the zeroth point to be tied
points 1 throughM by springs with spring constants equal
4. Similarly, consider the (M11)th point to be tied to points
1 throughM by springs with spring constant equal to 4. Th
resultant HamiltonianH is

H52 (
i 50

i 5M11

kXi
212 (

i 51

i 5M

~Xi2X0!212 (
i 51

i 5M

~Xi2XM11!2,

~23!

which provides a parametrization ofJi j in terms of arith-
metic constants and the adjustable parameter,k. The correla-
tion matrix is then directly determined in terms ofCi j

5Ji j
21 , whereJi j

21 refers to the elements of the inverse m
trix of Ji j .

To give a numerical example, forM1259 ~seven inter-
mediate variables!, thenk50.35 yields SAC. The matrix to
be inverted is
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J523
7.35 21 21 21 21 21 21 21 0

21 2.35 0 0 0 0 0 0 21

21 0 2.35 0 0 0 0 0 21

21 0 0 2.35 0 0 0 0 21

21 0 0 0 2.35 0 0 0 21

21 0 0 0 0 2.35 0 0 21

21 0 0 0 0 0 2.35 0 21

21 0 0 0 0 0 0 2.35 21

0 21 21 21 21 21 21 21 7.35

4 , ~24!
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with the resultrh150.56,rht50.68. In Sec. VI and Sec
VII we show, using two different methods, that SAC gen
ally occurs for the Hamiltonian, Eq.~23!, for ~positive! val-
ues ofM andk related by

M22kM2k223M22k.0. ~25!

The minimum value ofM for which SAC occurs with con-
tinuous degrees of freedom is thenM54. The associated
values ofk are 0,k,0.61. Further analysis is deferred
the following sections.

VI. DECIMATION: CONTINUOUS VARIABLES

Decimation for continuous variables proceeds ana
gously to that for discrete variables by integrating out
intervening degreees of freedom between head and tail v
ables. Consider a Hamiltonian describing interactions o
‘‘head’’ variableX0, a ‘‘tail’’ variable XM11, and one inter-
vening variableX1, denoted here asXh , Xt , andX1, respec-
tively. The following Hamiltonian is only a special case
Eq. ~23!,

H52k~Xh
21Xt

21X1
2!12~Xh2X1!212~X12Xt!

2.
~26!

This may be expanded as

H52~k11!~Xh
21Xt

2!12~k12!X1
224X1~Xh1Xt!.

~27!

The formula for the integration of a Gaussian,

E
2`

`

dx exp@2ax21bx#5S p

a D 1/2

expS b2

4aD , ~28!

allows one to decimate the intervening variableX1 resulting
in

E
2`

`

dX1 expS 2
1

2
H D

5S p

k12D 1/2

expF2~k11!~Xh
21Xt

2!1
~Xh1Xt!

2

k12 G ,
~29!
-

-
e
ri-
a

from which we note, upon expanding the (Xh1Xt)
2 term, an

effective interaction between head and tail variables prop
tional to 24/(k12). The magnitude of this effective inter
action increases proportionally to the number of interven
variables that are decimated, i.e.,Tht524M /(k12) if M
variables are decimated. The linear additivity of the effe
of multiple intervening variables is therefore simpler in t
continuous case compared to the discrete case of Sec. I

For M intervening variables,H becomes

H52kS Xh
21Xt

21 (
i 51

i 5M

Xi
2D

12 (
i 51

i 5M

~Xh2Xi !
212 (

i 51

i 5M

~Xi2Xt!
2. ~30!

The relative magnitude of ‘‘head-tail’’ to ‘‘head
intermediate’’ correlations can be evaluated by decimat
only M21 of the intervening variables, i.e., decimatin
X2 ,X3 , . . . ,XM , resulting in an expression involvingXh ,
Xt , andX1,

E
2`

`

dX2•••E
2`

`

dXM expS 2
1

2
H D

}expF S 2k2M1
M21

k12 D ~Xh
21Xt

2!2~k12!X1
2G

3expS 2~Xh1Xt!X112
M21

k12
XhXtD , ~31!

where} means up to an inessential multiplicative consta
Comparing the above expression to Eq.~21!, one may easily
read off elements of the inverse of the covariance matrix
follows: Chh

2152@(k1M )2(M21)/(k12)#, Ctt
2152@(k

1M )2(M21)/(k12)#, Cht
21522(M21)/(k12), C11

21

52(k12), Ch1
21522, Ct1

21522. Evaluation of the associ
ated correlations requires inversion of the symmetric 333
matrix having the above elements. Of interest is only
ratio r 5rht /rh1, where rht5Cht /(ChhCtt)

1/2 and rh1
5Ch1 /(ChhC11)

1/2. Squaringr for simplicity, and evaluating
the defining inequality for SAC,r 2.1, leads to the follow-
ing condition after some minor algebra:
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M2@k21~M12!k12#

.~k1M !~k12!@k21~M12!k1M #. ~32!

It may be verifed fork.0 and similtaneouslyM.0 that this
inequality is satisfied when

M22kM2k223M22k.0. ~33!

The region in (M ,k) space where SAC is exhibited is show
in Fig. 5.

VII. COLLECTIVE MODE: CONTINUOUS VARIABLES

Consider Eq.~23! and the corresponding matrix of cou
plings. For the sake of definiteness in the following d
played matrices, we setM55 temporarily, the generalizatio
to any value ofM being obvious. Also, for convenience, th
labeling of rows and columns is slightly modified: the ord
of degrees of freedom in the following matrices isXh
[X0 ,Xt[XM11 ,X1 ,X2 , . . . ,XM , because we want to ex
hibit the symmetry between the head and the tail and, m
over, we want to stress the matrix block structure which g
with the existence of the intermediate layer and the abse
of direct coupling between head and tail. It will be notic
that the formulas which relate covariance to correlation m
trix elements are insensitive to an arbitrary scaling of
degrees of freedom. The same is true for the ratiosr i
in

od

tio
o

-

r

e-
s
ce

-
e
5urht /rhiu, i51,2, . . . ,M , which compare the head-tail corre
lation with any of the head-relay~or tail-relay! correlations.

The matrix to be inverted then reads

FIG. 5. In theM.0,k.0 quadrant, the white area shows whe
the model with continuous variables exhibits SAC. The dark ar
conversely, does not allow SAC.
J523
M1k 0 21 21 21 21 21

0 M1k 21 21 21 21 21

21 21 21k 0 0 0 0

21 21 0 21k 0 0 0

21 21 0 0 21k 0 0

21 21 0 0 0 21k 0

21 21 0 0 0 0 21k

4 . ~34!
ee-

l-
While the diagonal matrix elements account for an anchor
of the Xi ’s to the origin of the configuration space,H, Eq.
~23! contains, besides such one-body terms, the two-b
interactions

V522~Xh1Xt! (
i 51

i 5M

Xi . ~35!

Such nondiagonal terms represent a dipole-dipole interac
between, on the one hand, ‘‘the head plus the tail,’’ and,
the other hand, a collective coordinate( i 51

i 5MXi . Out of this
collective coordinate, we want to single out, for example,X1,
in order to comparerht with rh1. It is then convenient to
define

X5~M21!21/2(
i 52

i 5M

Xi , ~36!
g

y

n
n

and take advantage of the fact that

V522~Xh1Xt!@X11~M21!1/2X#. ~37!

When expanded with respect to the initial degrees of fr
dom Xi , the collective coordinateX can be viewed as a
‘‘symmetric’’ vector, (M21)21/2(1,1,1, . . . ,1), with equal
components in the ‘‘collective’’ subspaceC spanned by
X2 ,X3 , . . . ,XM . The coefficient (M21)21/2 ensures a
proper normalization ofX with a Euclidean metric inC.

For the calculation ofrht and rh1, nothing prevents us
from representingJ on a suitable basis of the subspaceC,
such as an orthonormal basis includingX. For M55, such a
basis could, for instance, be made ofX and the other three
vectors (M21)21/2(1,1,21,21), (M21)21/2(1,21,1,21),
and (M21)21/2(1,21,21,1). Listing such vectors as co
umns generates the matrix
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R5~M21!21/2F 1 1 1 1

1 1 21 21

1 21 1 21

1 21 21 1

G . ~38!

For MÞ5 the structure ofR is the same, withX in its first
column and all other columns showing vectors orthogona
X. Since Xh , Xt , and X1 are left intact, the considere
change of basis in the (M12)-dimensional space will in-
c
o
e

-
be

c’

n
an

d
a

on
o

volve the block matrix,

S5F I 3 0̄

0T RG , ~39!

whereI 3 , 0̄, and 0T are, respectively, the identity matrix i
three-dimensional space, the 33(M21) null matrix, and its
transpose. We are now interested in the new representa
of J,
S21JS523
M1k 0 21 2~M21!1/2 0 0 0

0 M1k 21 2~M21!1/2 0 0 0

21 21 21k 0 0 0 0

2~M21!1/2 2~M21!1/2 0 21k 0 0 0

0 0 0 0 21k 0 0

0 0 0 0 0 21k 0

0 0 0 0 0 0 21k

4 . ~40!
mal

es

ing
n,
ad,

s

It must be stressed, whether we considerJ or its inverse
J21, that the 333 submatrix corresponding to the subspa
spanned byXh ,Xt ,X1 is unchanged. This is why we want t
calculaterht and rh1 in the new representation. The sam
invariance is true for the (M21)3(M21) submatrix corre-
sponding toX2 ,X3 , . . . ,XM . Indeed this submatrix was di
agonal and is not modified by the transformation descri
by R. Furthermore, forJ, the vanishing couplings ofX1 to
the same subspaceC are also left unchanged, obviously.

We now turn to the couplings ofXh ~or equivalentlyXt)
to C. In the initial representation these make a ‘‘symmetri
vector (21,21, . . . ,21), proportional toX, and thus or-
thogonal to all the other basis vectors of the new represe
tion. Hence all the corresponding new matrix elements v
ish, except that one which represents the coupling ofXh and
X. The corresponding strength becomes (M21)1/2, as pre-
dicted by Eq.~37!.

Furthermore, the new representation gives an almost
agonal matrix. The correlations to be calculated then dem
the inversion of a 434 submatrix only,

H452F M1k 0 21 2~M21!1/2

0 M1k 21 2~M21!1/2

21 21 21k 0

2~M21!1/2 2~M21!1/2 0 21k

G .

~41!

Straightforward, but slightly cumbersome, this inversi
of H4 provides the desired results,

rht5
M

k21~M12!k1M
,

e

d

’

ta-
-

i-
nd

rh1
2 5

~k1M !~k12!

@k21~M12!k1M #@k21~M12!k12#
. ~42!

It is easy to verify that, fork.0 and simultaneouslyM.0,
the quantityr 25(rht /rh1)2 is larger than 1 as soon as

M22kM2k223M22k.0. ~43!

This criterion comes from the factorization ofr 221, a ratio-
nal function ofk andM in the model. All factors are positive
definite, except that one,M22kM2k223M22k. This de-
fines the parameter domain where SAC occurs. The mini
integer value ofM for which this condition allows positive
values ofk is M54. For M53, the roots of the left-hand
side of this condition with respect tok are k50 and k5
25, while for M54 these arek526.61 andk50.61. As
shown by Fig. 5, where the arear ,1 is shaded, the positive
k root, showing the border of the SAC domain, increas
almost linearly as a function ofM. All the results of the
preceding section are recovered.

VIII. MUTUAL INFORMATION

In this section we show that our conclusions concern
SAC also hold if mutual information, instead of correlatio
is used to quantify the relationship between discrete he
tail, and intermediate variables. Mutual information@4# is
defined in terms of entropies as follows:

M5V~ i !1V~ j !2V~ i j !, ~44!

whereV( i ), respectivelyV( j ), are the single site entropie
at positioni, respectivelyj, e.g.,V( i )52(Xi

P(Xi)ln P(Xi).

The pairwise entropy is similarly defined asV( i j )5
2(Xi ,Xj

P(Xi ,Xj )ln P(Xi ,Xj).
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The single site and pairwise probability distributions m
be related to correlations by the Bahadur-Lazarfeld exp
sion @5# for an arbitrary, discrete state, multivariate probab
ity distribution,

P~X1 ,X2 , . . . ,XN!

5Pindep~X1 ,X2 , . . . ,XN!

3F11(
i , j

r i j YiYj1 (
i , j ,k

r i jkYiYjYk1•••G .
~45!

In the above,Pindep is the independent probability distribu
tion defined by

Pindep~X1 ,X2 , . . . ,XN!5)
i

Pi
~11Xi !/2~12Pi !

~12Xi !/2,

~46!

wherePi is the probability thatXi51. The variablesYi are
zero mean, unit variance variables related to theXi by Yi
5(Xi2^Xi&)/(12^Xi&

2)1/2. The r i j are the usual two-poin
correlation functions, whiler i jk ,r i jkl . . . are similarly
three-point, four-point,. . . , N-point correlation functions.

It is easily verified from Eq.~45! that the two-point mar-
ginalsP(Xi ,Xj ) reduce to

P~Xi ,Xj !5Pindep~Xi ,Xj !F11(
i , j

r i j YiYj G , ~47!

while the one-point marginals,P(Xi), reduce to P(Xi)
5Xi Pi1(12Xi)/2. For the situation considered in Secs. I
IV, Pi51/2, hence evaluating the marginal distributions
this case, and substituting into Eq.~44!, which defines the
mutual information, yields

Mi j 511@~11r i j !/2# ln@~11r i j !/2#

1@~12r i j !/2# ln@~12r i j !/2#. ~48!

Since (11r i j )/2 is bounded between 0 and 1, we may defi
an ‘‘entropy’’ V52q ln q2(12q)ln(12q) in terms of a fic-
titious probabilityq5(11r i j )/2 and rewrite the above as

Mi j 512V~q!. ~49!

In Secs. II–IV, the correlationrht was calculated and com
pared torh1. SAC is defined byurhtu.urh1u. Since entropy
is a concave function of the ‘‘probability,’’ then Eq.~48!
verifies thatMht.Mh1 wheneverurhtu.urh1u. Hence, the
examples of SAC described in Secs. II–IV hold if mutu
information, instead of correlation, is used to quantify t
relation between variables.

IX. DISCUSSION AND CONCLUSION

It is well known that multiple routes of communication
besides redundant coding of messages, can ensure re
transmission of information in the presence of noise. Inf
mation transmission is achieved by the preservation of c
relation, or mutual information, between an informati
source and an information receiver. This conservation of
n-
-

e

l

ble
-
r-

-

formation should not be confused with reinforcement of a
plitudes, because information is amplitude independent. T
paper shows that noisy signals transmitted via multi
routes can preserve information usingcoherence effects.

As usual, the multiplication of routes has the benefit
robustness, but the defect of an increase of cost. The
increase, in our case, can be moderated by the use of
with weak, and hence perhaps cheaper, couplings as lon
the links remain coherent with one another. While the bu
up of an amplitude by the addition of coherent signals is
a new phenomenon, the point of this paper is the build up
information via multiple routes involving relays.

What this paper showed in some detail is that the multi
route solution may easily proceed by relays, see Fig. 1
Fig. 3, rather than by multiple direct connections, see Fig
The method of decimation shows that, all told, relays amo
to direct routes, see again Fig. 4. Moreover, this paper s
ied the occurrence of superadditive correlation at finite te
perature. The increased correlation between emitter and
receiver can thus be implemented in the presence of no
The main result of the paper is that, given a scale for
noise ~temperature!, the system can be optimized with re
spect to its cost, namely both its architecture~the numberM
of relays! and the strength of the couplingsJ to be imple-
mented. This is clear from Fig. 2, for instance, which illu
trates the existence of both a minimum coupling strength
superadditive correlation to occur, and an optimal value
this strength. We show in Fig. 6 the best performancer avail-
able and the corresponding optimalJ, as functions ofM.

A system which shows a great amount of ‘‘fan out–f
in’’ architectures is the central nervous system of vertebra
As shown by@6#, synaptic processes are stochastic. Ther
thus a significant amount of information loss at synapses
is thus tempting to see whether multiple synaptic conta
between two neurons, or a sensor cell and a neuron,
neuron and an effector cell, may turn out to restore a co
lation which was degraded at individual synapses. Neu
physiological experiments for such tests might be possi
At a larger scale, the very strong ‘‘fan out–fan in’’ exhibite
by the cerebellum, from mossy fibers to Purkinje cells~as
many as 105 parallel fibers contacting a Purkinje cell!, might
also give rise to such reinforcement of correlations, m
useful in the coordination of ballistic motions. For ear
work on the theory of the cerebellum, see@7#. The narrow
time windows discovered by@8# in the action of basket cells

FIG. 6. Best performancer ~upper curve! and logarithm of the
corresponding coupling strengthJ ~lower curve! as functions of the
numberM of relays.
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upon Purkinje cells give a hint that precise time correlatio
are involved in the task of the cerebellum. A time-depend
reformulation of the present paper is clearly in order.

Finally, the SAC effect raises a warning: while analysis
complex systems often deduces a hierarchy of interact
from a hierarchy of correlations, see, e.g.,@9,10#, we proved
that indirect interactions may generate dominant correlatio
The hierarchical approach, therefore, demands some cau
An alternative approach is explored in@11,12#.
l
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on.
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